

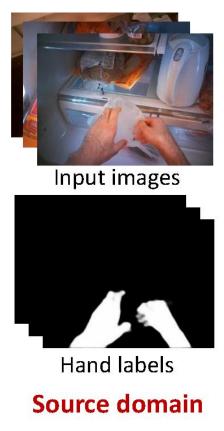
Generalizing Hand Segmentation in Egocentric Videos with Uncertainty-Guided Model Adaptation

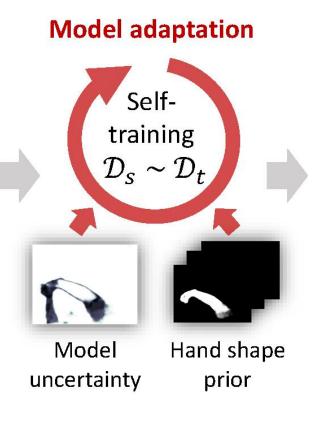
Minjie Cai¹, Feng Lu², Yoichi Sato³ ¹Hunan University, ²Beihang University, ³University of Tokyo <u>caiminjie@hnu.edu.cn</u>, <u>lufeng@buaa.edu.cn</u>, <u>ysato@iis.u-Tokyo.ac.jp</u>

Problem definition

Goal:

Adapt a hand segmentation model pre-trained on a source domain to a new target domain without labels.





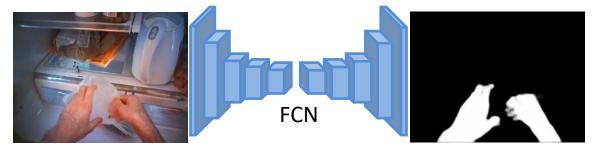
Before adaptation

After adaptation

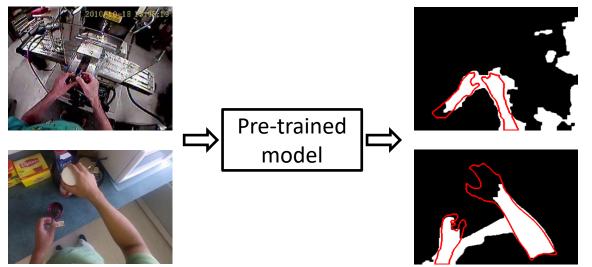
Target domain

Related work – Egocentric hand segmentation

• State-of-the-art performance with Fully Convolutional Network (FCN):

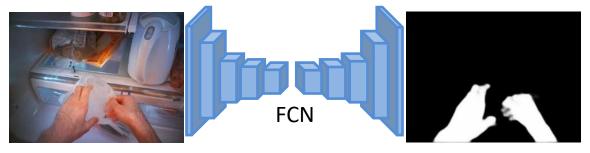


• However, it may fail in a new environment:

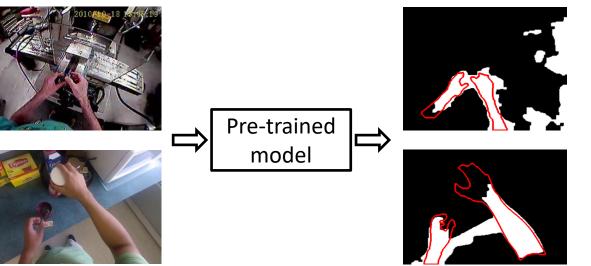


Related work – Egocentric hand segmentation

• State-of-the-art performance with Fully Convolutional Network (FCN):



• However, it may fail in a new environment:

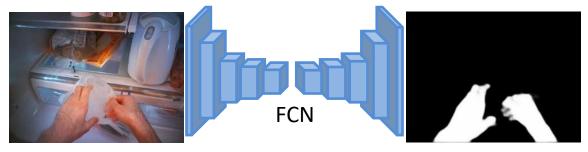


Seen environment

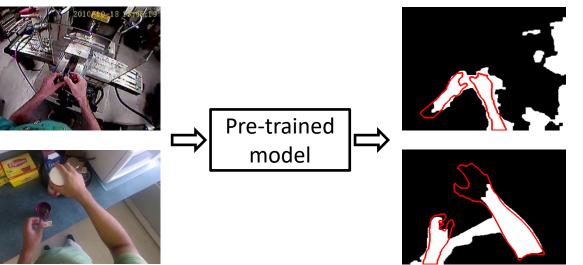
Urooj et al., "Analysis of hand segmentation in the wild", CVPR2018

Related work – Egocentric hand segmentation

• State-of-the-art performance with Fully Convolutional Network (FCN):



• However, it may fail in a new environment:

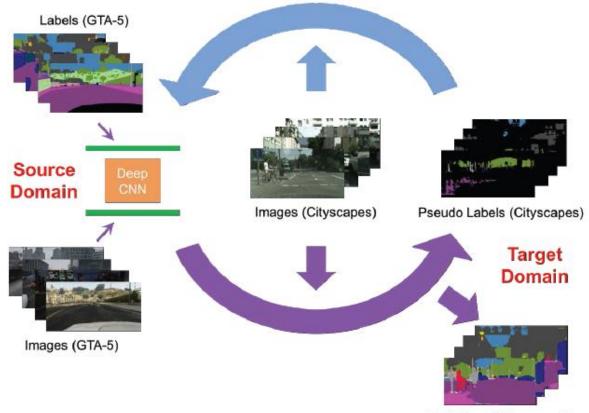


Unseen environment

Urooj et al., "Analysis of hand segmentation in the wild", CVPR2018

Related work – Unsupervised domain adaptation

• Pseudo-labels based self-training (others include adversarial learning, image translation et al.)



Predictions (Cityscapes)

Motivation:

- A unified and efficient framework for domain adaptation.
- Use predictions with high confidence (or low uncertainty) as labels.

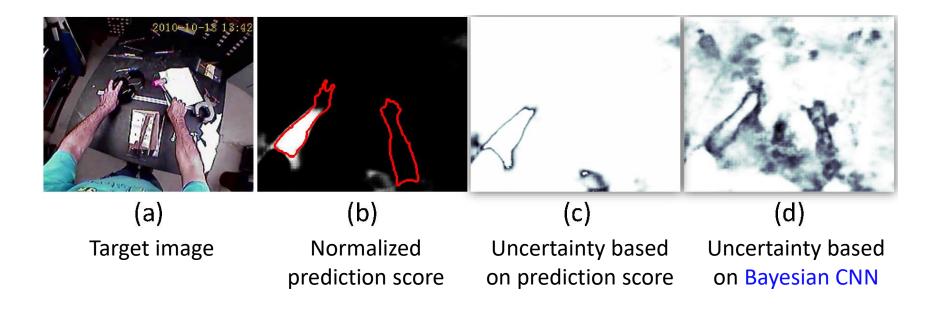
Drawback:

• Existing approaches didn't consider deeply about the real model uncertainty.

Zou et al., "Unsupervised domain adaptation for semantic segmentation via class-balanced self-training", ECCV2018 Zou et al., "Confidence-regularized self-training", ICCV2019

Uncertainty

Ideal uncertainty for domain adaptation should reflect the model's "real" confidence/uncertainty about its predictions.

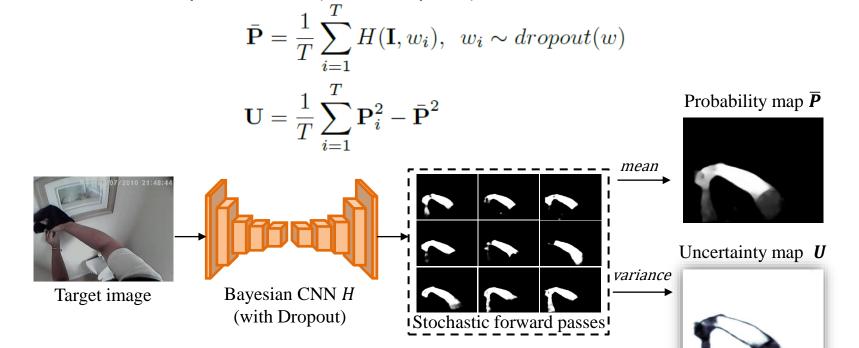


Uncertainty estimation from Bayesian CNN

Approximate Bayesian inference:

$$p(y|x) = \int p(y|x, w)q(w) dw$$
$$\approx \frac{1}{T} \sum_{i=1}^{T} p(y|x, w_i), \ w_i \sim q(w)$$

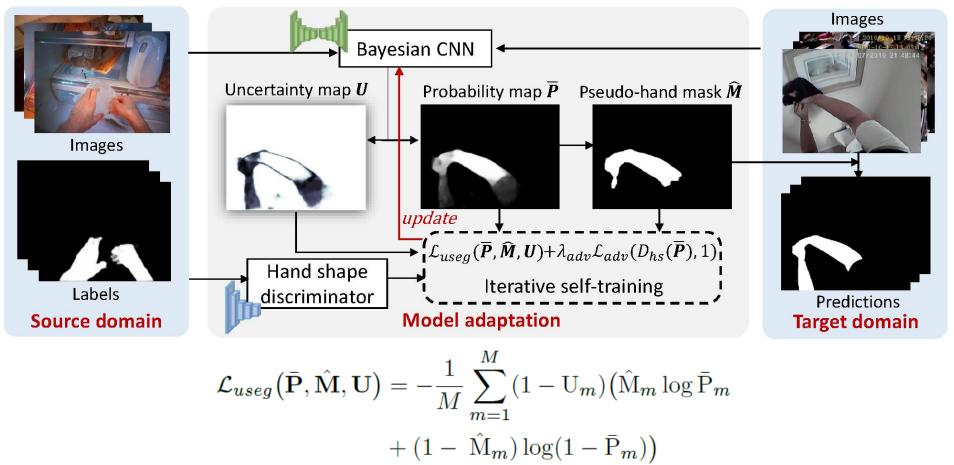
Uncertainty estimation from Bayesian CNN (with Dropout):



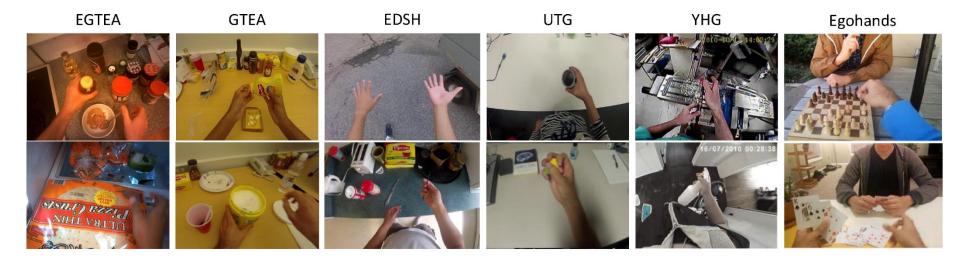
Method overview

Key idea:

- Use uncertainty to guide self-training with pseudo-labels in the target domain.
- Use pre-trained hand discriminator to enforce hand shape consistency.



Datasets and experimental setting



Train/test split:

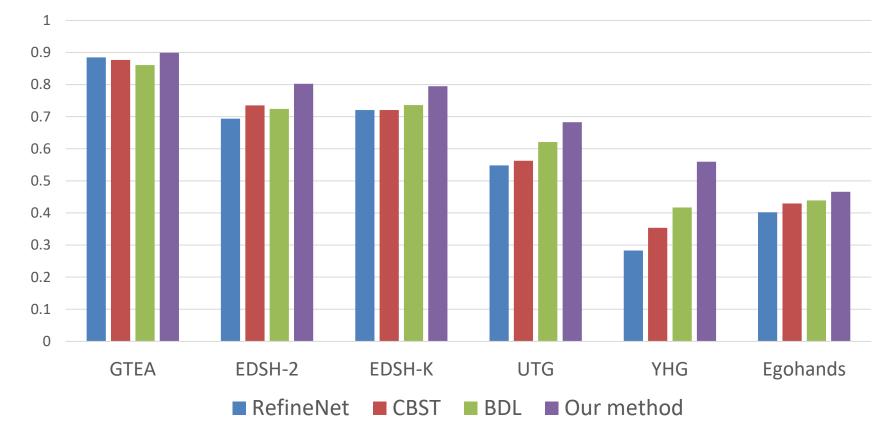
- EGTEA is used as training data (source domain)
- The rest datasets are used as test data (target domain)

Evaluation metric:

• Intersection over Union (IoU)

Comparison with state-of-the-art

Performance comparison (IoU)



RefineNet: Analysis of hand segmentation in the wild, CVPR2018

CBST: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training, ECCV2018 BDL: Bidirectional learning for domain adaptation of semantic segmentation, CVPR2019

Ablation study

• Upper bound performance: Fine-tuning CNN with target labels

 GTEA
 EDSH-2
 EDSH-K
 UTG
 YHG
 Egohands

 Finetuning
 0.9254
 0.8448
 0.7802
 0.8495
 0.8224
 0.8463

• Performance of different components

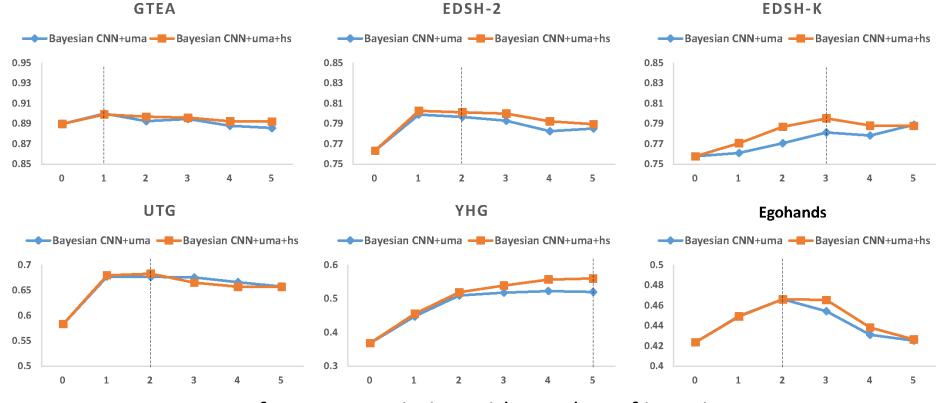
Method	GTEA		EDSH-2		EDSH-K		UTG		YHG		Egohands	
	mIoU	∆mIoU	mIoU	∆mIoU								
CNN	0.8845	-0.0409	0.6936	-0.1512	0.7205	-0.0594	0.5481	-0.3014	0.2831	-0.5393	0.4019	-0.4444
CNN+uma	0.8766	-0.0488	0.7141	-0.1307	0.7723	-0.0079	0.6089	-0.2406	0.3159	-0.5065	0.4252	-0.4211
Bayesian CNN	0.8896	-0.0358	0.7632	-0.0816	0.7576	-0.0226	0.5832	-0.2663	0.3619	-0.4605	0.4235	-0.4228
Bayesian CNN+uma	0.8945	-0.0300	0.7965	-0.0483	0.7812	+0.0010	0.6762	-0.1733	0.5223	-0.3001	0.4665	-0.3798
Bayesian CNN+uma+hs	0.8990	-0.0255	0.8025	-0.0423	0.7951	+0.0149	0.6827	-0.1668	0.5596	-0.2628	0.4660	-0.3803

 Δ Shows the gap between performance of fine-tuning.

- uma: uncertainty-guided model adaptation.
- hs: hand shape constraint
- Bayesian CNN+uma+hs: our full model

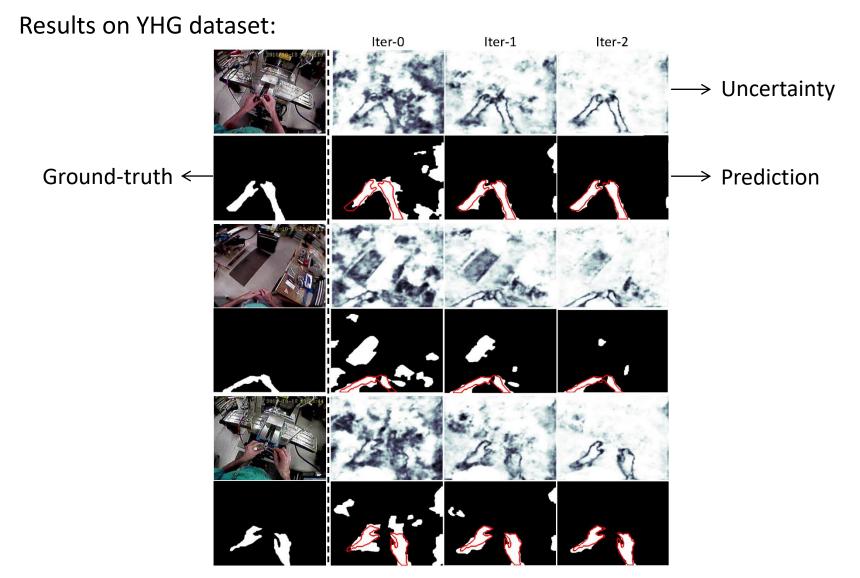
Model convergence

• Our method converges quickly to the target domain within a few iterations.



Performance variation with number of iterations

Qualitative results



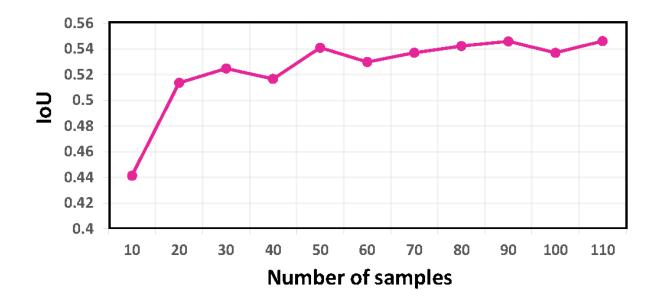
Qualitative comparison (YHG dataset)

Before adaptation

After adaptation

Online evaluation

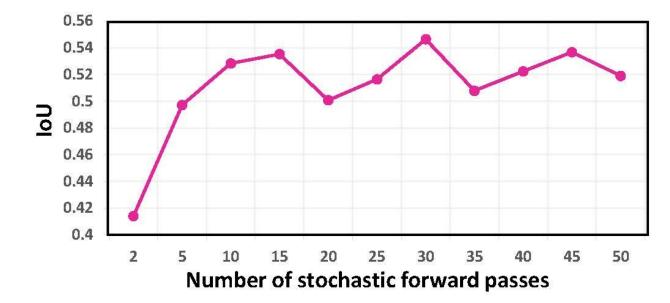
• Our method adapts quickly to the target domain with a few unlabeled samples.



Performance variation with number of target samples on YHG dataset

Existing risk: fluctuating performance

• The adaptation performance fluctuates with different number of sampling.



Performance variation with number of stochastic forward passes on YHG dataset

Conclusions

- We propose a novel and efficient approach for generalizing hand segmentation.
- The key idea is uncertainty-guided model adaptation, which can be extended to various domain adaptation tasks.
- The impact and mechanism of different sampling strategies for uncertainty estimation needs further study (to be done).