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Problem definition

Goal:
Adapt a hand segmentation model pre-trained on a source domain
to a new target domain without labels.
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Related work — Egocentric hand segmentation

* State-of-the-art performance with Fully Convolutional Network (FCN):

Pre-trained
model

Urooj et al., “Analysis of hand segmentation in the wild”, CVPR2018
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Urooj et al., “Analysis of hand segmentation in the wild”, CVPR2018



Related work — Egocentric hand segmentation

* State-of-the-art performance with Fully Convolutional Network (FCN):
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Related work — Unsupervised domain adaptation

e Pseudo-labels based self-training (others include adversarial learning, image translation et al.)

Labels (GTA-5)

Motivation:

* Aunified and efficient framework for
domain adaptation.

» Use predictions with high confidence (or
low uncertainty) as labels.

Images (Cityscapes) Pseudo Labels (Cityscapes) D rawba C k .

"' Target * Existing approaches didn’t consider deeply
s oo about the real model uncertainty.

Images (GTA-5)

Predictions (Cityscapes)

Zou et al., “Unsupervised domain adaptation for semantic segmentation via class-balanced self-training”, ECCV2018

Zou et al., “Confidence-regularized self-training”, ICCV2019



Uncertainty

Ideal uncertainty for domain adaptation should reflect the model’s “real”
confidence/uncertainty about its predictions.
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Uncertainty estimation from Bayesian CNN

Approximate Bayesian inference:  p(y|z) = /p(y|£, w)q(w) dw
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Uncertainty estimation from Bayesian CNN (with Dropout):
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Gal et al., “Dropout as a Bayesian approximation”, ICML2016



Method overview
Key idea:

* Use uncertainty to guide self-training with pseudo-labels in the target domain.
* Use pre-trained hand discriminator to enforce hand shape consistency.
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Datasets and experimental setting

GTEA EDSH UTG
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Train/test split:
 EGTEA is used as training data (source domain)
* The rest datasets are used as test data (target domain)

Evaluation metric:
* Intersection over Union (loU)

Egohands
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Comparison with state-of-the-art

Performance comparison (loU)
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RefineNet: Analysis of hand segmentation in the wild, CVPR2018
CBST: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training, ECCV2018
BDL: Bidirectional learning for domain adaptation of semantic segmentation, CVPR2019
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Ablation study

Upper bound performance: Fine-tuning CNN with target labels

GTEA EDSH-2 EDSH-K UTG YHG Egohands
Finetuning 0.9254 0.8448  0.7802 0.8495 0.8224 (.8463

Performance of different components

Method GTEA EDSH-2 EDSH-K UTG YHG Egohands
mloU AmloU mloU AmloU mloU AmloU mloU AmloU mloU AmloU mloU AmloU
CNN (0.8845 -0.0400 0.6936 -0.1512 0.7205 -0.0594 0.5481 -0.3014 0.2831 -0.5393 0.4019 -0.4444

0
CNN-+uma 0.8766 -0.0488 0.7141 -0.1307 0.7723 -0.0079 0.6089 -0.2406 0.3159 -0.5065 0.4252 -0.4211
Bayesian CNN 0.8896 -0.0358 0.7632 -0.0816 0.7576 -0.0226 0.5832 -0.2663 0.3619 -0.4605 0.4235 -0.4228
Bayesian CNN+uma 0.8945 -0.0300 0.7965 -0.0483 0.7812 +0.0010 0.6762 -0.1733 0.5223 -0.3001 0.4665 -0.3798
Bayesian CNN+uma+hs 0.8990 -0.0255 0.8025 -0.0423 0.7951 +0.0149 0.6827 -0.1668 0.5596 -0.2628 0.4660 -0.3803

A Shows the gap between performance of fine-tuning.

* uma: uncertainty-guided model adaptation.
* hs: hand shape constraint
* Bayesian CNN+uma+hs: our full model



Model convergence

Our method converges quickly to the target domain within a few iterations.
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Qualitative results
Results on YHG dataset:

Iter-0 Iter-1 lter-2

4

T . - : “(,
| -?.‘.‘ 'tg —> Uncertainty

Ql
., \ ép |
Ground-truth <— —> Prediction
“-
,? -
= ‘

;.'I , . A t 3 " - l.\
J E‘rpau Rl

'
-
s [

!

4
x
|

\‘ .‘.u.r!-

£Y .-



Qualitative comparison (YHG dataset)

Before adaptation After adaptatlon



Online evaluation

Our method adapts quickly to the target domain with a few unlabeled
samples.
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Existing risk: fluctuating performance
 The adaptation performance fluctuates with different number of sampling.
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Conclusions

 We propose a novel and efficient approach for generalizing hand segmentation.

* The key idea is uncertainty-guided model adaptation, which can be extended to
various domain adaptation tasks.

 The impact and mechanism of different sampling strategies for uncertainty
estimation needs further study (to be done).

Code: https://github.com/cai-mj/UMA
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