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An Ego-vision System for Hand Grasp Analysis
Minjie Cai, Kris M. Kitani, and Yoichi Sato

Abstract—This paper presents an egocentric vision (ego-vision)
system for hand grasp analysis in unstructured environments.
Our goal is to automatically recognize hand grasp types and to
discover the visual structures of hand grasps using a wearable
camera. In the proposed system, free hand-object interactions
are recorded from a first-person viewing perspective. State-of-
the-art computer vision techniques are used to detect hands and
extract hand-based features. A new feature representation which
incorporates hand tracking information is also proposed. Then
grasp classifiers are trained to discriminate among different grasp
types from a pre-defined grasp taxonomy. Based on the trained
grasp classifiers, visual structures of hand grasps are learned
using an iterative grasp clustering method. In experiments,
grasp recognition performance in both laboratory and real-world
scenarios are evaluated. The best classification accuracy our
system achieves is 92% and 59% respectively. System generality
to different tasks and users is also verified by the experiments.
Analysis in real-world scenario shows that it is possible to
automatically learn intuitive visual grasp structures that are
consistent with expert-designed grasp taxonomies.

Index Terms—Hand grasp, wearable system, egocentric vision,
recognition.

I. INTRODUCTION

GRASP is commonly defined as every hand postures used
for holding an object stably during hand manipulation

tasks. Understanding the way how humans grasp object is
important in different domains ranging from robotics [1],
prosthesis [2], hand rehabilitation [3], to motor control analysis
[4] and many others. In robotics, the study of hand function
provides critical inspiration for robotic hand development [1].
In rehabilitation, statistical information about daily hand grasp
usage is an important factor of the evaluation criterion for
injured hand recovery [3].

Traditional approaches to grasp analysis have been devel-
oped primarily in controlled laboratory settings which often
include hand-contact sensors or calibrated cameras. However,
there are many limitations in such structured environments.
Intrusive sensors may inhibit free hand-object interactions; cal-
ibrated camera system requires hand interactions are recorded
in a limited workspace. As a result, hand grasp in real-world
environments has seldom been studied.

Our goal is to develop a fully automatic and non-contact
system for analyzing hand grasp usage in daily activities. In
particular, we propose an ego-vision system for recognizing
hand grasp types and learning visual grasp structures using a
wearable camera. There are many benefits from the proposed
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system. First, it overcomes the constraints of other modes of
hand sensing by allowing for continuous recording of natural
hand activities. Furthermore, it provides an ideal egocentric
view for grasp analysis since the hand-object interactions are
often visible in the center of the visual field. Most of all, an
ego-vision system enables us to study hand grasp in the real-
life setting at a large scale that is impossible before.

Our system incorporates advances of computer vision tech-
niques that can be used as a tool to advance studies in
prehensile analysis. In particular, we adopt state-of-the-art
approaches for egocentric hand detection, in order to deal
with the new challenges of egocentric vision such as un-
constrained hand movements and rapidly changing imaging
conditions (e.g., illumination and background) due to extreme
ego-motion. Based on detected hand regions, features are
examined and extracted which encode appearance and motion
of the hand interactions, and grasp classifiers are trained for
discrimination among different grasp types. Finally, the trained
grasp classifiers are used to measure the visual similarities
between hand grasps and learn an appearance based grasp
hierarchy, which we call the visual structures of hand grasps.
The experiments show that it is possible to learn intuitive
visual structures automatically from data which are consistent
with an expert-designed grasp taxonomy.

This paper extends our prior work [5] as follows: 1) We
extensively evaluate the system performance by examining
state-of-the-art feature representation used in object and action
recognition. 2) We propose a new feature representation which
achieves best classification accuracy and is robust to unreliable
hand detection. 3) We greatly expand the UT Grasp Dataset
and evaluate the system generality to different tasks and
users. 4) We quantitatively evaluate the consistence of the
automatically learned grasp structures with expert-designed
grasp taxonomies.

The rest of the paper is organized as follows. Section II
presents related work. Section III describes the architecture
and main components of our ego-vision system. Performance
evaluation of the system is shown in Section IV. Section V
discusses the system performance and possible extensions.
Section VI concludes the paper.

II. RELATED WORK

A. Human Grasp Taxonomy

Grasp taxonomies have been studied for decades to better
understand the use of human hands [6][2][7][8][1][9][10].
Early work by Schlesinger [6] classified hand grasps into 6
major categories based on hand shape and object properties. In
1956, Napier [7] proposed a classification scheme for power
and precision grasps based on requirements of the manipu-
lation task, which has been widely adopted by researchers
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in the medical, biomechanical and robotic fields. Through
observation of manufacturing tasks, Cutkosky provided a com-
prehensive grasp taxonomy [1] which has played an important
role in guiding robotic hand design. Recently, Huang et al.
[11] proposed an unsupervised method to discover appearance-
based grasp taxonomies. In their method, hand images with
similar appearance are clustered together as distinct grasp
types.

The human grasp taxonomy proposed by Feix et al. [10] is
the most complete to date as argued and has been widely used
in grasp analysis in recent years [12], [13], [14]. Considerable
efforts have been devoted in obtaining the statistics of human
hand usage based on manual annotation [13][15][16]. How-
ever, the annotation process requires many hours of visual
inspection by skilled annotators. As it becomes easier to
acquire large amounts of video data, it is clear that the manual
approach is not scalable to larger datasets. In this work,
however, we propose an ego-vision system that is able to
support automatic grasp analysis with large amounts of video
data.

B. Automated Grasp Analysis

Approaches for automatic hand grasp analysis have been
developed primarily in structured environments. Hand tracking
devices such as data gloves or inertial sensors have been used
to obtain detailed measurements of joint angles and positions
of the hand [17][18][19][20]. Santello et al. [17] used Principle
Component Analysis (PCA) to analyze finger coordination of
imagined hand grasp using joint angle data from a data glove.
However, the main limitation of hand tracking devices is that
they must be worn on the hand and thus inhibit free hand
interactions.

Visual sensing of the hands manipulating the objects
[21][22][23][24][25] allows a non-contact markerless tracking
of hand-object interactions. Romero et al. [24] proposed a non-
parametric estimation method to track hand poses interacting
with objects by performing a nearest neighbor search in a
large synthetic dataset. However, most visual tracking systems
require that hand interactions are recorded in a structured
environment. Yang et al. [26] trained a convolutional neural
network to classify hand grasp types on unstructured public
dataset. However, it only considers a small number of grasp
types trained on static hand images. In our work, the proposed
system can handle a more complete set of grasp types from
real-life hand manipulation tasks.

C. Hand Detection In Egocentric Vision

With the portability and ideal egocentric view provided by
wearable cameras, egocentric vision has recently become a
popular topic in computer vision community. Li and Kitani
[27] first addressed hand detection problem in the context of
egocentric video. They proposed a pixel-level hand detection
method which can adapt to changing illuminations. Li et al.
[28] studied the eye-hand coordination in egocentric video and
used information from hand detection to predict where the eyes
look. Baraldi et al. [29] proposed to use dense trajectories with
hand segmentation for hand gesture recognition and proved
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Fig. 1. Outline of the proposed system. The highlighted blocks are the
main processing components of the system which will be introduced in
Section III. Input video captured from a wearable camera is processed by
hand segmentation and feature extraction to extract feature representation for
hand images. Ground-truth grasp labels and extracted hand features are used
as input of the supervised learning to train grasp classifiers for recognizing
different grasp types. Grasp taxonomy is a collection of grasp types which
are predefined or generated from iterative grasp clustering.

the effectiveness of dense trajectories in egocentric paradigm.
Rogez et al. [30] recently presented promising results on
discrete hand pose recognition from RGB-D data. However,
these discrete poses have no direct semantic correspondence to
hand grasp types. Our prior work [5] first developed techniques
to recognize hand grasp types in everyday hand manipulation
tasks recorded with a wearable RGB camera and provided
promising results with appearance-based features. Saran et
al. [31] used detected hand parts as intermediate represen-
tation to recognize fine-grained grasp types. The intermediate
representation outperforms low-level appearance-based repre-
sentation when hand parts can be well detected. This work
further extends our prior work by incorporating hand tracking
information to tackle unreliable hand segmentation in real-
world scenario.

III. GRASP LEARNING SYSTEM

We aim to automate the hand grasp analysis for daily
manipulation tasks. To achieve this goal, we propose an ego-
vision system which can recognize different hand grasp types
and learn visual grasp structures automatically from large scale
of data recorded with a wearable camera. The outline of our
system is illustrated in Fig. 1. The input to the system is
egocentric video recording daily manipulation tasks. Based
on state-of-the-art hand detection techniques we segment hand
regions from egocentric videos. Then we extract grasp-related
features for training discriminative grasp classifiers. Finally,
we use an iterative clustering method to learn visual structures
of hand grasps.

A. Hand Segmentation

The detection of hands from egocentric videos is an im-
portant pre-processing stage of hand grasp analysis but also
a challenging task. In egocentric videos, the background and
hand appearance are rapidly changing due to frequent camera
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Fig. 2. Example of hand segmentation. (a) Image from egocentric video (b)
Pixel-wise hand probability map (c) Candidate hand regions (d) Hand region
segmented within a bounding box

motion. Recent work on egocentric hand detection has shown
that robust hand detection performance can be achieved if the
hand model is adaptable to changes in imaging conditions [27].
Therefore, we train a multi-model hand detector composed
by a collection of hand pixel classifiers indexed by global
image appearance. Given a test image, the global appearance
represented by a color histogram is computed as a visual
probe, for every frame, in order to recommend the n-best hand
pixel classifiers. Based on the multi-model hand detector, a
probability map is generated for each image as illustrated in
Fig. 2(b). The value of each pixel represents the likelihood of
being a hand pixel in the original image.

Hand regions of a test image are segmented based on the
corresponding hand probability map. Candidate hand regions
with arms are first obtained by binarizing the probability map
with a threshold. Regions under a certain area proportion are
discarded and at most two candidate regions are retained.
Fig. 2(c) shows two candidate hand regions painted with green
and orange contours. In present study we only consider the
right handed grasp. The left hand is suppressed by simply
selecting the candidate hand region which is right-most. If
no hand region is detected, the image is discarded. The
hand region is finally segmented with a fixed size bounding
box (Fig. 2(d)). To remove the unwanted arm part, ellipse
parameters (length of long/short axis, angle) are fitted to the
candidate hand region. The arm part is approximately removed
by shortening the length of long axis to 1.5 times of the length
of short axis. A fixed size bounding box is drawn by fixing
the top-center of the bounding box to the top-center of the
arm-removed hand region. The size of the bounding box is
determined heuristically for each video and takes advantage
of the fact that the distance between the hands from the head-
mounted camera is consistent throughout the video.

Moreover, a temporal tracking method [32] is utilized to
handle the case of two overlapping hands. Briefly speaking,
the position and movement of each candidate hand region is
stored and used in hand segmentation of the next video frame.
Thus two overlapped hands can be separated by using tracking
information of each hand before overlapping.

HOG extractor Probability weight 

(a) (b) 

Fig. 3. Visualization of hand-shape related features. (a) Histogram of Oriented
Gradient (HoG) (b) Hand probability weighted HoG (HHoG)

B. Feature Representation

In expert-defined grasp taxonomies, different grasp types are
often identified by different hand shapes, object context and
types of hand-object interactions. Therefore, we examine and
extract features for hand regions addressing different aspects
of hand grasp.

1) Hand Shape: Hand shape is represented by Histogram of
Oriented Gradient (HoG) [33] computed from a hand region.
The HoG feature is an image descriptor based on collected
local distribution of intensity gradients and has been widely
used in object detection. It is computed by first dividing a hand
region into a grid of smaller regions (cells) and then computing
histogram of gradient orientations in each cell. Cell histograms
within a larger region (blocks) are then accumulated and
normalized to make the block descriptor less sensitive to
varying illumination. Finally, the resulting block histograms
are concatenated to form a HoG feature descriptor. We use a
cell size of 8 × 8 pixels with 9 orientation bins, and a block
size of 16×16 pixels. A visualization of example HOG feature
is shown in Fig. 3(a).

Two variants of HoG features are examined. The first is the
global HoG feature described above. The second is hand prob-
ability weighted HoG (HHoG). HHoG effectively suppresses
gradients from the background. As shown in Fig. 3(b), HoG
features corresponding to non-hand regions are removed by
weighting each block histogram with squared hand probability
at the center of the block.

2) Visual Context: We extract features from local keypoints
in order to capture the visual context of the grasped object.
In particular, we extract Scale Invariant Feature Transform
(SIFT) [34] for each detected keypoints. Example keypoints
are visualized in Fig. 4 where the scale and orientation of each
keypoint are illustrated with a green circle and a red radius.
Histogram of gradients around each keypoint is computed as
a keypoint descriptor. Note that keypoints are detected around
the object and the part of the hand in contact with the object.
We used a Bag-of-Words (BoW) approach to obtain a feature
descriptor which is composed by the frequency of different
keypoint patterns. A codebook of 100 keypoint patterns is gen-
erated using k-means clustering over all keypoint descriptors.

3) Convolutional Neural Network: Unlike HoG and SIFT
which are hand crafted feature representation composed by
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Fig. 4. Visualization of SIFT keypoints. The circle and the line segment
starting from the center of the circle indicate the region scale and principle
orientation of each keypoint respectively.

orientation histograms, Convolutional Neural Network (CNN)
is a biologically inspired hierarchical model which is believed
to be able to extract high level feature representation as human
brain does. With the advancement of hardware computing
capacity and efficient training algorithms, the use of deep
and large scale of CNNs becomes feasible and has achieved
substantially higher accuracy in different visual recognition
domains [35][36][37]. CNN has also been utilized for recog-
nizing grasp types in static images [26] where a five-layer
CNN is trained with nearly 5000 image patches. However the
amount of labeled data is insufficient for training a large CNN.

In this work we combine a large CNN model pre-trained
on a large auxiliary dataset (ImageNet) with domain-specific
fine-tuning on a small hand grasp dataset, similar to the work
of Girshick et al. [38]. Here we are interested in CNN-based
feature representation. We extract a middle layer feature output
as the feature representation of a hand region by forward
propagating the hand region through the trained CNN model.

4) Dense Hand Trajectories: The dense trajectories pro-
posed by Wang et al. [39] has been widely used as feature
representation for action recognition, and proven to achieve
state-of-the-art performance on many video datasets of third
person view. To apply it to grasp recognition in egocentric
videos, it is important to focus on the regions where hand
interactions occur and remove irrelevant information from
the background. Motion-based background subtraction doesn’t
work well in first person video since the background is moving
due to camera motion and is hard to reliably estimate and
remove the camera motion as illustrated in Fig. 5(c). In
this work, we propose a feature representation called “Dense
Hand Trajectories (DHT)” which uses hand detection as a
spatial prior to extract dense trajectories most related to hand
interactions.

We first briefly introduce the extraction of dense trajectories
[39] following which the proposed DHT is presented. At each
frame, feature points are densely sampled on a grid spaced
by 5 pixels at multiple spacial scales. Points in homogeneous
area are removed since it is impossible to track them without
any structure. Feature points at each spacial scale are tracked
separately using a dense optical flow algorithm [40]. Each
trajectory is composed by feature points tracked for consec-
utive frames with trajectory length set to L = 15 frames.
The main difference of our proposed DHT from [39] is that
we use detected hand regions as a spatial prior to weight
the trajectories. Specifically, we define a variable H for each
tracked trajectory to count the times of passing through the
hand regions as illustrated in Fig. 6. At each frame t, a
trajectory with a starting feature point sampled within the hand
region is initialized with H = 1 as indicated by the trajectory
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Fig. 5. Example of dense hand trajectories. (a) Image from egocentric video
(b) Hand probability map (c) Visualization of optical flow after removing the
camera motion (d) Visualization of dense hand trajectories about the hand
region
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Fig. 6. Illustration of our approach to extracting dense hand trajectories. The
detected hand regions are used as spatial prior to weight trajectories which
pass through the hand regions. Variable H is used to count the times of being
tracked within the hand regions for each trajectory. At the end of tracking (L
indicates tracking length), trajectories with H less than a certain threshold
Th are considered as non-hand trajectories and removed.

(a), otherwise is initialized with H = 0 as indicated by the
trajectory (b). At each subsequent frame during the tracking
procedure, H is increased by 1 for all trajectories of which
the feature points being tracked are within the hand regions.
At the end of tracking, trajectories with H less than a certain
threshold Th are considered as non-hand trajectories and thus
removed. In our experiments, we set Th = L/2.

There are two stages of feature extraction based on dense
hand trajectories. At the first stage, descriptors are com-
puted for each trajectory. At the second stage, descriptors
of trajectories are pooled together and further encoded for
each frame. We compute four descriptors same as in [41],
which are Displacement, HoG, Histograms of Optical Flow
(HOF), and Motion Boundary Histograms (MBH). Length of
descriptors are 30 for Displacement, 96 for HOG, 108 for
HoF and 192 for MBH. These descriptors contains information
of both hand motion and hand appearance in the space-time
volume along the trajectory. We use Fisher vector to encode
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pooled trajectory descriptors for each frame. Fisher vector
has shown performance improvement over bag-of-features for
image/video classification in recent researches. For details of
Fisher vector encoding, one can refer to [42]. We first use
Principal Component Analysis (PCA) to reduce the dimension
of each descriptor type to D = 16, and randomly sample
a subset of 300, 000 descriptors to estimate the Gaussian
Mixture Model (GMM) with number of Gaussians set to
K = 256, as in [42]. The dimension of each descriptor
type after Fisher vector encoding is 2DK. Each frame is
represented by concatenation of Fisher vectors of different
descriptor types.

C. Grasp Recognition And Abstraction

We train one-versus-all multi-class grasp classifiers for
the grasp types defined in Feix’s taxonomy [10]. We use
this taxonomy since it is one of the most complete one in
existence and has been widely applied to hand manipulation
analysis [15][16]. Probability calibration [43] is conducted for
each classifier in order to produce comparable scores. During
testing, each video frame with detected hands is classified
independently and assigned with a grasp type of which the
classifier outputs the highest score.

We define a correlation index for measuring the visual
similarity between different pairs of grasp types based on
classification results. The correlation index Ci,j between grasp
type i and grasp type j is defined as:

Ci,j =
1

2
(
mi,j

ni
+

mj,i

nj
) (1)

where mi,j denotes the number of samples from grasp type
i misclassified as grasp type j and vice versa. ni, nj are
the number of samples from grasp type i and grasp type j,
respectively.

Based on the correlation index, we implement an iterative
grasp clustering algorithm by iteratively clustering two most
similar grasp types. The algorithm is described in Algorithm 1.
This process automatically learns a dendrogram of grasp types,
that is, the visual structures of hand grasps.

Algorithm 1 Iterative Grasp Clustering
Initialize: N ⇐ the number of grasp types, consider each
grasp type as a single-member grasp cluster
while N > 1 do

Step1: Train grasp classifiers for each grasp cluster
Step2: Perform grasp classification, compute correlation
index for each pair of grasp clusters
Step3: Merge two grasp clusters with biggest correlation
index into one grasp cluster, N ⇐ N − 1

end while

IV. EXPERIMENTS

To examine the effectiveness of different visual features
for recognizing grasp types, we collected a new dataset in a
laboratory environment (we call it “UT Grasp Dataset”). Only
a subset of grasp types in Feix’s taxonomy are considered

Fig. 7. Grasp taxonomy [10] used in the experiment. 17 grasp types
commonly used in daily manipulation tasks [15] are selected.

in the dataset, since not all the grasp types are commonly
used in everyday activities. We select 17 distinct grasp types
as shown in Fig. 7 based on the statistical result of grasp
prevalence provided by Bullock et al. [15]. We have also
trained a classifier for non-grasp type using hand images
when the hand is not holding any object (e.g., when the
hand is approaching the object). Five subjects were asked
to grasp different objects placed on a desktop after brief
demonstration of how to perform each grasp type. There
are five unique sets of objects which are commonly used in
different tasks (cleaning, cooking, office work, bench work,
and entertainment). Each subject performed all 17 grasp types
on one object set in one video recording. The same grasping
was performed twice at different time. In total, we recorded
50 trials (50 video recordings) of hand grasp data with five
subjects and five object sets. Each recording lasts about five
minutes and the total video data is over four hours. Videos
were recoded by a head mounted camera (GoPro Hero2) at
30 fps and downsized to 960 × 540 pixels per frame. Fig. 8
(top 2 rows) shows example images from UT Grasp Dataset.

To evaluate our system in real-world environments, we also
conducted experiments on a public human grasping dataset
[44]. 20 video sequences recording a machinist’s daily work
are used (we call it “Machinist Grasp Dataset”). The total
length of video data is nearly 2.5 hours. The video quality
of the Machinist Grasp Dataset is relatively low with image
resolution of 640× 480 pixels. Fig. 8 (bottom 2 rows) shows
some example images. Grasp types have been annotated by
experienced raters. We focus on the same 17 grasp types as in
UT Grasp Dataset which are frequently used through out all
sequences.

We have examined six different features in our system
as described in Section III-B. Four features (HoG, HHoG,
SIFT, CNN) rely on hand regions of fixed size. In the ex-
periments, hand regions are segmented with bounding boxes
of 160 × 160 pixels for UT Grasp Dataset and 128 × 128
pixels for Machinist Grasp Dataset. Both HoG and HHoG are
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9 Fig. 8. Images samples from UT Grasp Dataset (top 2 rows) [5] and Machinist
Grasp Dataset (bottom 2 rows) [44].

computed on hand regions after resizing to 160 × 160 pixels
and the feature dimension is 2916. The feature dimension
of SIFT is 100 since it is encoded using BoW with 100
dictionary entries. Features based on CNN are extracted from
hand regions using the Caffe implementation [45] of the CNN
model proposed by Krizhevsky et al. [35]. Each hand region
is forward propagated through five convolutional layers and
a fully connected layer and the output feature dimension is
4096. Another two features are based on dense trajectories.
Improved Dense Trajectories (IDT) proposed by Wang and
Schmid [41] improves dense trajectories by removing camera
motion estimated by computing homography from matched
feature points between two consecutive frames. Our proposed
DHT also removes camera motion. The difference is that we
discard feature matches within detected hand regions since the
hand motion is inconsistent with camera motion. Both IDT and
DHT are encoded using Fisher vector with same parameters
and the feature dimension is 32768.

Linear SVMs are trained for each grasp type using the
visual features mentioned above. We use the implementation
of LIBSVM [46] for training. At test time, each frame with
detected hand region is assigned to a grasp type of which the
classifier obtains the highest score. The classification accuracy
is used for evaluating the grasp recognition performance.

A. Grasp Recognition On UT Grasp Dataset

We applied our approach to UT Grasp Dataset to see how
visual features can discriminate among different grasp types
in controlled environments.

1) Cross-Trial Performance: To evaluate grasp recognition
performance for specific user (subject) and task over different
trials, we train grasp classifiers for each subject and object
set on one trial and test them on another trial. Recognition
performance of different features are shown in Fig. 9(a).
The average and standard deviation of accuracy is computed
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Fig. 9. Grasp recognition performance of different features on UT Grasp
Dataset. The figure shows performance statistics (average and standard devi-
ation of classification accuracy) under three different experimental settings:
(a) Cross-trial (b) Cross-task and (c) Cross-user.

from the classification accuracy on all subjects and object
sets. CNN-based feature achieves best average accuracy of
0.92. As for the four appearance-based features (HoG, HHoG,
SIFT, CNN), the superior performance of CNN demonstrates
the advantage of high-level biology-inspired features in ac-
curate classification. Performance from SIFT indicates local
appearance-based feature alone is less discriminative than
global features. Although the separation between hand and
object in HHoG seems intuitive and well-motivated, HHoG
performs worse than HoG. This is partly due to the hand
segmentation noises, and also because HoG encodes addi-
tional information about the grasped object. As for the two
trajectory-based features, better performance of the proposed
DHT over IDT proves the effectiveness of removing unrelated
information from the background. Although DHT has slightly
worse performance than CNN, we believe this is because
hand appearance is consistent in different trials and motion
information contained in DHT doesn’t help in the controlled
environment. Experimental results show that it is possible to
construct high performance task-specific grasp classifiers for
specific users.

2) Cross-Task Performance: To evaluate system generality
across different tasks (simulated by different object sets), we
use a leave-one-task-out cross-validation scheme. Specifically,
we train grasp classifiers on four object sets and test on the rest
object set and iterate the process five times. The average and
standard deviation of accuracy is computed from classification
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TABLE I
GRASP RECOGNITION PERFORMANCE ON MACHINIST GRASP DATASET. PRECISION (P) AND RECALL (R) ARE SHOWN FOR TOP NINE PREVALENT GRASP

TYPES. NUMBER WITHIN PARENTHESES ASIDE EACH GRASP TYPE INDICATES SAMPLE PROPORTION.

MW (.20) LP (.19) LT (.12) T3F (.11) TIF (.11) T4F (.07) T2F (.05) PS (.04) IFE (.03) Total
P R P R P R P R P R P R P R P R P R Accu.

HoG .35 .37 .48 .67 .38 .53 .17 .14 .17 .23 .29 .06 .15 .09 .08 .06 .86 .69 .34
HHoG .32 .37 .39 .49 .38 .58 .18 .14 .20 .20 .09 .02 .06 .02 .06 .06 .33 .42 .29
SIFT .19 .21 .43 .62 .26 .41 .00 .00 .04 .01 .00 .00 .00 .00 .20 .06 .27 .69 .24
CNN .59 .56 .59 .74 .64 .77 .26 .23 .31 .35 .26 .25 .21 .21 .41 .28 .70 .73 .49
IDT .63 .60 .68 .84 .80 .95 .19 .16 .39 .46 .33 .28 .20 .19 .76 .69 .83 .73 .54
DHT .69 .71 .65 .86 .88 .94 .24 .22 .46 .49 .40 .38 .32 .40 .69 .63 .95 .77 .59

accuracy on all object sets. From Fig. 9(b), we can see the
DHT-based feature achieves best average accuracy of 0.764.
Compared to the performance obtained in the cross-trial case
(Fig. 9(a)), average accuracy of the cross-task case degrades by
nearly 15%, and the standard deviation of accuracy becomes
larger. This is reasonable since objects used in different tasks
have different appearance which undermines the discrimina-
tion ability of appearance-based classifiers. Still, experimental
results demonstrate the system’s ability to generalize across
different tasks.

3) Cross-User Performance: To evaluate system generality
across different users, we use a leave-one-subject-out cross-
validation scheme. The average and standard deviation of
accuracy is computed from classification accuracy on all sub-
jects. As illustrated in Fig. 9(c), best performance is achieved
from CNN-based feature and DHT-based feature with average
accuracy of 0.73 and 0.72 respectively. The performance
degrades nearly 20% in the cross-user case compared to that
obtained in the cross-trial case. Two important reasons can
explain the performance degradation. One reason is that the
skin color and size of hands of different users are different.
Another reason is that different users prefer different grasping
styles even in performing the same grasp type. Taking Writing
Tripod for example, one user prefers to grip the pen-like tool
between the index and middle fingers, which is uncommon to
other users who distribute pressure evenly on three fingers–the
thumb, index and middle fingers. Although current subject size
is not sufficient enough to fully validate the system’s ability
to generalize to large population, the potential of training
general grasp classifiers which can be applied to other users
is demonstrated.

B. Grasp Recognition On Machinist Grasp Dataset

We applied our approach to Machinist Grasp Dataset to
evaluate the system performance in real-world environments.

Grasp recognition performance of different features on
Machinist Grasp Dataset using 5-fold cross validation is shown
in Table I. Sample proportion of each grasp type is also shown
in the table as the prevalence of different grasp types is non-
uniform. Due to space limitation, results of nine most prevalent
grasp types and total accuracy are illustrated. Abbreviation
is used for each grasp type and is composed by first letters
of the full name. Our proposed DHT achieves highest ac-
curacy of 0.59 compared to other features. It is reasonable
that DHT works better than IDT since irrelevant trajectory

15 

(a) (b) 

Fig. 10. Examples of unreliable hand detection. (a) Incomplete hand detection
with fingers missing due to extreme lighting condition (b) False detection from
background with similar skin color

information from background has been removed. CNN-based
feature improves the accuracy by over 0.15 compared to HoG,
which verifies the superiority of biology-inspired high-level
features over hand-crafted features. Also it is obvious that
trajectory-based features (DHT, IDT) outperform appearance-
based features (CNN, HoG), partly because hand motion
information is also captured in trajectory-based features which
enhances the discrimination ability.

We believe the robustness to unreliable hand detection
of trajectory-based features is another important reason why
they outperform appearance-based features. Hand detection in
real-world scenarios is sometimes unreliable due to extreme
lighting conditions (e.g., overexposure) and cluttered back-
ground. Fig. 10 shows some examples of bad detection. Grasp
recognition relying on appearance-based features is heavily
influenced by unreliable hand detection. To evaluate such
influence, we also compared the classification accuracy under
different hand detection conditions as shown in Table II. For
ideal detection, we manually select image samples in which
automatic hand detection results are acceptable and nearly
25% of instances are removed. For real detection, we use
all image samples. There is a performance drop from ideal
detection to real detection for HoG and CNN, which indicates
appearance-based features are sensitive to hand detection.
However, IDT and DHT are robust to hand detection with
even slight performance improvement under real detection. We
believe the reason resides on the feature tracking procedure
through which IDT and DHT are extracted. And more training
data under real detection further improves the recognition
performance.

Although our system achieves promising performance with
accuracy of 0.59 compared to 0.2 (the percentage of the most
prevalent grasp type Medium Wrap) at the chance level, it
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Power sphere 

True positive False positive 

Thumb-2 Finger Thumb-4 Finger Tripod 

Thumb-index finger Extension type 

Tripod Tip Pinch Adduction 

Precision Disk Small Diameter 

Fig. 11. Examples of true positives and false positives from grasp recognition on Machinist Grasp Dataset. Image crops on the left side are examples of true
positives of Thumb-3 Finger, Thumb-Index Finger, and Medium Wrap. Image crops on the right side are examples of false positives with original grasp types
indicated under each image.

TABLE II
PERFORMANCE INFLUENCES BY HAND DETECTION. FOR IDEAL

DETECTION, IMAGE SAMPLES WITH IDEALLY DETECTED HAND REGIONS
ARE USED. FOR REAL DETECTION, ALL IMAGES SAMPLES ARE USED.

Ideal detection Real detection
HoG 0.408 0.339

HHoG 0.325 0.294
SIFT 0.271 0.238
CNN 0.524 0.485
IDT 0.523 0.543
DHT 0.579 0.592

fails to work well for some visually similar grasp types. As
shown in Table I, precision and recall of some grasp types
(e.g., Thumb-2 Finger and Thumb-3 Finger) are relatively low.
Some examples of failure cases are shown in Fig. 11. Two
columns of image crops on the left side show true positives of
a grasp type of which the prototype is also illustrated. Three
columns of image crops on the right side show false positives
with their original grasp types indicated under each image.
As shown in these examples, some grasp types are extremely
difficult to differentiate, even for human annotators. Taking
Thumb-3 Finger for example, both of the first true positive
and the first false positive show the machinist’s hand holding
a tool. It is hard to tell how many fingers are used in holding
the tool only from visual perception.

The visual similarity between some pairs of grasp types
(e.g., Thumb-2 Finger and Thumb-3 Finger) poses big chal-
lenges in training discriminative grasp classifiers based on vi-
sual features. Distinguishing between such fine-grained grasp
types would require more advanced techniques to extract
detailed information such as the exact finger positions and
contact surfaces.

C. Learning The Visual Structures Of Grasps
Here we show how the correlation between visually trained

grasp classifiers can be used to discover the visual structure

15 
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0.25 

Fig. 12. Top 5 pairs of grasp types with highest correlation index.

of hand grasps. Based on Equation 1, correlation index is
computed for all grasp pairs using the classification results
obtained on Machinist Grasp Dataset. We have removed bad
hand detection samples from training data in order to make the
correlation between classifiers more likely reflect the visual
similarity of hand grasps. Top 5 grasp pairs with highest
correlation index are shown in Fig. 12.

Following the iterative grasp clustering algorithm described
in Algorithm 1, a dendrogram of grasp types is obtained by
iteratively clustering two most correlated grasp types after
each iteration of supervised learning. A dendrogram is a
binary tree which gives a complete graphical description
of the hierarchical clustering. The final constructed grasp
dendrogram based on DHT is shown in Fig. 13. The original
grasp types from Feix’s taxonomy are located at the leaf nodes
(level-0). Grasp types with the higher correlation are clustered
at lower levels, while those dissimilar with each other are
clustered later at higher levels of the dendrogram. We observe
that grasp types are clustered in a manner consistent with
known divisions of power and precision grasps in expert-
designed grasp taxonomies [1][10]. With the exception of
Precision Disk and Extension Type, the division between
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Fig. 13. Automatically learned grasp dendrogram (taxonomy tree). Classification accuracy obtained at different clustering levels are shown.

power and precision grasps is preserved until level-12 (the 12-
th iteration) of the grasp dendrogram. There are five groups
of grasp types remained at level-12. The group with grasp
types ranging from Medium Wrap to Power Sphere represents
the power grasps characterized by stably holding an object
with palm and five fingers. In contrast, the group ranging from
Thumb-4 Finger to Adduction represents the precision grasps
often used to flexibly manipulate an object with dexterous
finger articulation. Another interesting group represented by
Lateral Pinch and Writing Tripod stands intermediately be-
tween power and precision grasps where both stability and
dexterity are addressed. These qualitative examples show that
our approach can discover grasp structures consistent with
parts of the expert-designed taxonomy.

The more important observation however is that intuitive
grasp structures have been learned automatically from data.
While classical grasp taxonomies have been designed through
manual introspection, the shared uncertainty among visual
classifiers can also be used to learn intuitive structures over
human grasps. To have a quantitative comparison between
different hierarchical grasp taxonomies, we propose a new
metric called Normalized Common Distance (NCD) score. The
NCD score is computed as:

NCD(Ta, Tb) =
1

N

∑
lA∈Ta,Tb
lB∈Ta,Tb

A 6=B

|da(lA, lB)
Ha

− db(lA, lB)

Hb
|

where lA and lB are leaf nodes with labels of A and B
respectively, Ha and Hb are depth of tree Ta and Tb, d(∗, ∗) is
the Lowest Common Ancestor (LCA) [47] distance between
two nodes, and N is the number of all possible pairs of
(lA, lB). In our case, a tree is a hierarchical grasp taxonomy
and labels of its leaf nodes are grasp types from the taxonomy.
Taking DHT-based tree (Fig. 13) for example, the tree has a
depth of 8, and two leaf nodes with label Medium Wrap and
Power Sphere has LCA distance of 5. The proposed NCD
score can be used for comparing tree structures with different
depth and branches. The NCD score has a minimal value of

0, and a upper bound value of 2, with smaller value indicating
higher similarity.

We learned grasp taxonomy trees automatically based on
three different features (HoG, CNN, DHT) and compared them
with a reference taxonomy tree (Cutkosky’s grasp taxonomy).
We also compared between the automatically learned taxon-
omy trees themselves. The NCD scores are shown in Table III.
The reference taxonomy tree has the smallest NCD score with
the DHT-based one than with other ones, indicating the DHT-
based taxonomy tree is most similar to Cutkosky’s taxonomy
tree. Another important observation is that the automatically
learned taxonomy trees are actually very similar to each other
as indicated by the NCD scores between themselves.

TABLE III
QUANTITATIVE COMPARISON BETWEEN DIFFERENT GRASP TAXONOMY

TREES MEASURED BY NCD SCORE.

Tree pair NCD score
(Tref ,Thog) 0.358
(Tref ,Tcnn) 0.418
(Tref ,Tdht) 0.353
(Thog ,Tcnn) 0.200
(Tcnn,Tdht) 0.324
(Tdht,Thog) 0.304

D. Recognition Using Grasp Abstractions

Based on the learned grasp taxonomy tree (Fig. 13), it is
possible to “cut” the tree at different levels to obtain different
sets of grasp clusters. Furthermore, each slice (abstraction)
level can be interpreted as a new grasp taxonomy. By learning
grasp classifiers for grasp taxonomies at different abstraction
levels, we can achieve a trade-off between more detailed clas-
sification and more robust classification. To better show this
trade-off, grasp classification accuracy at each abstraction level
is also given in Fig. 13. By cutting a higher level of the tree to
define a smaller grasp taxonomy, we can achieve more reliable
grasp classification. For example, at level-12 of the tree, we
will be able to differentiate 5 grasp types with an accuracy
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Fig. 14. Grasp recognition performance at different levels of grasp abstrac-
tions.

of 0.78. On the other hand, cutting at level-5 allows us to
differentiate 12 grasp types with an accuracy of 0.66. Thus,
the learned visual structure gives researchers the flexibility of
finding a good balance between better performance and more
detailed grasp analysis.

The variation of grasp recognition performance at different
levels of the grasp taxonomy trees based on HoG, CNN and
DHT are shown in Fig. 14. The chance level (percentage of
the most prevalent grasp type in the selected abstraction level)
is also drawn to demonstrate the bottom-line performance.
As expected, the classification accuracy for all three features
grows up steadily as we increase the abstraction level. From
level-12 the accuracy increases dramatically since big grasp
clusters are merged together and the chance of misclassifi-
cation becomes much lower. Moreover, the big performance
gap among the three features at lowest level (fine-grained
classification) becomes smaller as abstraction level increases
and inter-class ambiguity diminishes.

V. DISCUSSIONS

As illustrated in the experiments, there is a big performance
gap between grasp recognition in the laboratory setting and in
the real-world setting. Also there is visual similarity between
some pairs of grasp types, making it hard for the visually
trained classifiers to reliably distinguish between fine-grained
grasp types. Nevertheless, the visual similarity between differ-
ent grasp types is explored to learn intuitive visual structures
of hand grasps.

In the following sections, we first discuss the influences of
different environments on system performance and the key
issues to be addressed. Then, we discuss the insights and
possible applications from the automatically learned visual
structures of hand grasps.

A. System Performance Under Different Environments

In general, the proposed system achieves reliable grasp
recognition performance in controlled environments, where
hands can be reliably detected and each grasp type is cor-
rectly performed and clearly recorded. Specifically, the system

achieves average accuracy of 0.92 in the cross-trial case, where
training data and test data record one subject grasping the
same set of objects at different time. The average accuracy
drops to 0.764 in the cross-task case. The changing object
appearance is the main reason of performance degradation
since the objects being grasped in the test data never appear
in the training data. The accuracy further drops to 0.73 in the
cross-user case, which demonstrates that hand appearance and
grasping styles of different users also have an impact on the
system performance.

The system performance degrades significantly in real-
world environments, where hands in real-life manipulation
tasks are recorded and the video quality is relatively low.
Specifically, average accuracy drops from 0.904 (we compare
with the cross-trial case in UT Grasp Dataset since the data
in Machinist Grasp Dataset is recorded from single subject) to
0.59 when the proposed DHT is used. It should be noted that
the system performance degrades much worse when prevalent
appearance features (HoG and CNN) are used. For HoG,
accuracy drops from 0.831 to 0.34. And for CNN, accuracy
drops from 0.92 to 0.49.

We believe there are three key issues to be addressed for
real-world applications of the system. One major issue is
reliable hand detection in real-world environments. Although
the DHT is proposed to address the problem of false hand
detection, future work is desired to fundamentally improve
the hand detection. The second issue is more diverse grasp
taxonomies. Most of existing grasp taxonomies have been
designed for rigid objects with consistent shapes. Therefore,
it is hard for human raters to reliably annotate the grasp
types with soft objects (e.g. towel) or with objects of irregular
shapes. The third issue is the visual similarity between dif-
ferent grasp types. In present work, visual structure of hand
grasps has been learned to provide a trade-off strategy between
more detailed classification and more robust classification.
However, to improve the discrimination ability for fine-grained
grasp classification, other modes of sensing data such as depth
information might also be desired to infer more detailed grasp
information.

B. Visual Structure Of Hand Grasps
As mentioned above, the learned grasp structures provide

researchers with a compromise solution between more robust
classification and more detailed classification. It depends on
actual situation that which level of grasp abstraction to use
for training grasp classifiers. For applications in which only
the classification of power and precision grasps is cared about,
higher abstraction level with less grasp types can be selected
to achieve better performance without affecting the application
goal. The chance level is another important factor to be
considered in the selection of abstraction level, for the actual
recognition power is reflected in the ratio of classification
accuracy versus chance level. Specifically, taking Fig. 14 for
example, the abstraction level above level-12 would better not
be used as the chance level rises dramatically after merging
big clusters.

The learned visual structure can also be used to refine
grasp annotations. There are often two reasons behind high
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correlation of two grasp types. One reason is that the two
grasp types are intrinsically similar from their definition (finger
articulation and object geometry), such as Thumb-2 Finger and
Thumb-3 Finger. Another reason, which is important to be
noted here, is annotation confidence. In real-world setting, a
subject is doing natural manipulation tasks without performing
specific grasp type from any order, therefore some recorded
hand poses are not corresponding exactly to any grasp types
in existing grasp taxonomies. While human raters are inclined
to annotate unknown hand poses to any close grasp types
in their mind, the annotation becomes inconsistent for such
unknown poses, of which the close grasp types are interrelated
in training. By inspecting data samples of the interrelated
grasp types based on the learned visual structures, it can help
researchers to refine grasp annotations of low confidence or
even to define a set of new distinct grasp types.

In present work, the visual structures are learned by itera-
tively clustering predefined grasp types based on a supervised
learning process. However, it is insufficient to deal with
undefined hand-object interactions often appeared in new sce-
narios. This can be addressed by integrating an unsupervised
clustering method for discovering unknown grasp types. As
done in the work of Huang et al. [11], an unsupervised
clustering method is utilized to obtain a diverse set of hand-
object interactions based on hand appearance, from which
new distinct grasp types can be discovered. By adding newly
discovered grasp types into existing grasp taxonomy, the grasp
analysis system would be more adaptable to new scenarios.

VI. CONCLUSIONS

We proposed an egocentric vision-based system to auto-
mate the hand grasp analysis in large amounts of video data
recorded with a wearable camera. Given an egocentric video,
hands are automatically detected, and grasp classifiers are
trained to recognize different grasp types based on state-of-the-
art computer vision techniques. Furthermore, intuitive visual
structures of hand grasps are learned by an iterative grasp
clustering method.

The system performance is evaluated in both laboratory
and real-world scenarios. In laboratory scenario, the system
achieves high performance grasp recognition (92% accuracy)
for specific users, and shows its potential for generalizing
across different tasks (76% accuracy) and users (73% ac-
curacy). Although the recognition performance degrades a
lot (59% accuracy with the proposed feature) in real-world
scenario, our work shows considerable potential for developing
automatic systems for analyzing everyday hand grasp usage
with large scale of data. Moreover, the automatically learned
visual structures of hand grasps give researchers the flexibility
of finding a good balance between more robust classification
and more detailed grasp analysis.

In future work, we plan to expand the current dataset to
include hand grasp data from more subjects that cover different
ages and races, in order to validate and further improve the
system reliability to generalize to large population. Besides,
we also plan to extend the system to deal with both RGB
and depth data so as to make the system more stable in real-

world environments as wearable RGB-D cameras may become
available in the near future.
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