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Abstract

This work aims to develop a computer-vision technique

for understanding objects jointly attended by a group of

people during social interactions. As a key tool to dis-

cover such objects of joint attention, we rely on a collec-

tion of wearable eye-tracking cameras that provide a first-

person video of interaction scenes and points-of-gaze data

of interacting parties. Technically, we propose a hierarchi-

cal conditional random field-based model that can 1) lo-

calize events of joint attention temporally and 2) segment

objects of joint attention spatially. We show that by alter-

nating these two procedures, objects of joint attention can

be discovered reliably even from cluttered scenes and noisy

points-of-gaze data. Experimental results demonstrate that

our approach outperforms several state-of-the-art methods

for co-segmentation and joint attention discovery.

1. Introduction

Joint attention is one of the primitive group behaviors ob-

served during social interactions. In a meeting scene, peo-

ple sometimes read a document together to share the infor-

mation. On the street, there is a certain object like a posted

notice that attracts attention of multiple pedestrians simul-

taneously. The understanding of when and to what such

joint attention is established is crucial for multiple disci-

plines. For instance, joint attention of children provides an

important cue for autism studies [4]. Moreover, locations

where a group of people jointly focus could also be used for

automatic video summarization [1]. In this work, we aim

to develop a computer-vision technique that can automati-

cally discover objects of joint attention from multiple video

streams recorded during natural social interactions.

We are particularly interested in using wearable eye-

tracking cameras, such as Tobii Glasses, as a key tool to dis-

cover objects of joint attention. Such eye-tracking cameras

can provide first-person points-of-view videos that contain

what were observed in the camera wearer’s field of view

(1)

(2)

(3)

(1)

(2)

(3)

Figure 1. Discovering Objects of Joint Attention. Joint attention

between persons (1) and (2) is detected (highlighted in red bound-

aries) from first-person videos recorded with points of gaze data

(green circles in the video frames.)

[8][3][13], and points of gaze data indicating where the

wearer looked at in the first-person videos (see Figure 1).

The use of multiple cameras equipped by interaction parties

is, therefore, promising for recording what they attended

jointly during interactions [26].

One pioneering work along this line of research has

been presented recently [11]. By comparing spatiotemporal

patches around points of gaze based on their visual similar-

ity, they can localize temporal intervals when joint attention

occurred. However, their approach becomes problematic

when 1) first-person videos capture cluttered scenes and /

or 2) eye tracking is inaccurate, both of which often hap-

pen in recording natural social interactions. Under cluttered

scenes, spatiotemporal patches around points of gaze may

include not only objects being focused on but also surround-

ing objects or complex backgrounds, making visual features

extracted from the patches irrelevant to the objects of focus.

Moreover, noisy points-of-gaze data provided by inaccurate

eye tracking do not necessarily correspond to where people

actually attend. As a result, the straightforward comparison

of spatiotemporal patches around points of gaze becomes

unreliable.

To address these problems, we present a new approach of

discovering objects of joint attention, which alternates tem-

poral localization of joint attention and spatial segmentation

of jointly attended objects. The key insight behind the pro-

posed approach is that, given accurate segments of objects

being looked at in multiple videos, the visual similarity of

the segments provides a strong cue for determining whether

2313



or not joint attention is occurring. In turn, given the tem-

poral localization of joint attention, we can know when the

visual similarity of the segments should be enforced more

strongly than other cues such as proximity to points of gaze.

This contributes to better segmentation of jointly attended

objects.

We formulate our approach using a hierarchical condi-

tional random field (CRF) that observes as input segment

proposals extracted from multiple videos, and infers which

segments are attended in each video and whether joint at-

tention is established as latent variables. While comparing

the visual similarity of segments that are likely to be a part

of objects being looked at across multiple videos, we also

evaluate the temporal consistency on which segments are

looked at by individuals and if joint attention is established.

This makes it possible to discover objects of joint attention

reliably even when scenes are cluttered, and points of gaze

are noisy.

Our main contributions are summarized as follows:

firstly, to the best of our knowledge, this work is the first to

both temporally localize and spatially segment joint atten-

tion. Secondly, we propose a hierarchical CRF that jointly

solve the two tasks together. Thirdly, we introduce a new

dataset of natural social interactions recorded with multi-

ple wearable eye-trackers equipped by interaction parties,

which includes annotations of temporal intervals and spa-

tial segments of objects being looked at jointly. We will

make this dataset publicly available.

1.1. Related Work

Co-segmentaion One of the popular computer vision top-

ics closely relevant to our work is co-segmentation, and

much work has been done recently [5, 22, 2, 6, 28, 27,

23]. One basic assumption behind existing co-segmentation

methods is that the same object instances should be present

under different background contexts for multiple input

sources (with some exceptions aimed for dealing with intra-

class variability of foreground objects, e.g., [10, 17]). Simi-

lar to our work, [9] used general object proposals as can-

didate regions. They further used a multi-state selection

graph model to jointly optimize the segmentation of multi-

ple objects. However, previous works only focus on fore-

ground objects that are not necessarily the objects of at-

tention. This prevents direct applications of existing co-

segmentation methods and requires an additional cue to

identify those objects. In this work, we utilize gaze in-

formation as an important cue for segmenting objects from

multiple videos that are under human attention.

Joint attention estimation Another topic relevant to our

work is joint attention estimation which is of great impor-

tance to social cognition [12, 18] and the research of autism

[4]. Park et al. proposed methods [14, 20, 19] to estimate

social saliency by modeling human viewpoint as a 3D cone

and use the intersections to construct social saliency fields.

These methods are however designed to detect intersections

of fields-of-view of multiple wearable cameras, which do

not necessarily correspond to objects of joint attention. The

most relevant work is Kera et al. [11] which tried to tempo-

rally localize joint attention by comparing commonalities

of image appearance around gaze positions from multiple

videos. However, their method didn’t consider the spatial

segmentation of the attended object, which in turn weak-

ened the performance in cluttered scenes. In our method, we

temporally localize joint attention of multiple people with

spatial segmentation of their attended objects.

2. Proposed Model

Given a collection of pairs of first-person videos and

points-of-gaze data recorded in synchronization by multi-

ple people in interactions, we aim to 1) temporally localize

when joint attention occurs and 2) spatially segment object

instances that people jointly attended to. As stated earlier,

we observe that accurate object segmentation guides tem-

poral localization of joint attention by evaluating the visual

similarity of segments being looked at, and the prior knowl-

edge about when joint attention occurs will act as a salient

cue for segmenting object regions being looked at jointly

in each video. These observations motivate us to develop

a framework to solve these two tasks alternately. Specif-

ically, we propose a new model based on the conditional

random field (CRF) that estimates temporal intervals and

spatial segments of jointly-attended objects via alternating

optimization.

2.1. Model Architecture

Our model bases a hierarchical CRF that comprises sev-

eral linear-chain CRFs as a sub-module. Figure 2 (a) de-

picts the overall architecture. We exclusively consider a

simple case where we have the only two sub-module CRFs

for modeling joint attention of two persons. We will ex-

tend our model later for general cases where more than two

people exist.

Let jt ∈ {0, 1} be a latent binary variable indexed

by time-frame, where jt = 1 means the two people es-

tablish joint attention at frame t and jt = 0 otherwise.

For the p-th video recorded by the p-th person (we here

consider p ∈ {1, 2} for two-person cases), we denote by

R
(p)
t = {r

(p)
t,1 , r

(p)
t,2 , . . . }, a set of region proposals (spa-

tial segments) at frame t. This can be generated by any

region proposal method such as selective search [24] that

provides spatial segments as object candidates. Then, the

object segment looked at by the p-th person is described by

s
(p)
t ∈ R

(p)
t (e.g., red boundaries in Figure 2 (b)). We regard

s
(p)
t as a latent variable as noisy points of gaze are not nec-
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Figure 2. Proposed Hierarchical CRF Model for discovering joint attention of two persons. The model accepts points of gaze g
(p)
t as

the input (green circles in (b), p ∈ {1, 2}) and estimate segments s
(p)
t being looked at (red boundaries in (b)) as well as binary state jt

indicating whether the two persons establish joint attention or not.

essarily located inside the segment actually being looked at.

Finally, we let g
(p)
t ∈ R

2
+ be a 2D point of gaze data at

frame t (green circles in Figure 2 (b)), which is recorded in

synchronization with the p-th video.

Now we construct the proposed model. The p-th sub-

module takes points-of-gaze data G(p) = (g
(p)
1 , . . . , g

(p)
T )

as observations and segments being looked at S(p) =

(s
(p)
1 . . . , s

(p)
T ) as latent variables. As a connection across

sub-modules, two segments s
(1)
t and s

(2)
t further depend on

joint attention variable jt, which intuitively means that what

each person looks at depends on if the two persons look at

the same object or not. The objective function is then for-

mulated as follows:

Ψ(S(1)
, S

(2)
, J | G(1)

, G
(2)) =

∑

p∈{1,2}

ΨGO(S
(p) | G(p))

+
∑

p∈{1,2}

ΨTS(S
(p))

+ ΨJA(J, S
(1)

, S
(2) | G(1)

, G
(2))

+ ΨTJ(J),
(1)

where the terms ΨGO,ΨTS,ΨJA,ΨTJ are given concretely

in the next section.

General cases Our model can be extended to cases where

N ≥ 2 persons are present. Taking M = N(N−1)/2 pairs

of first-person videos and points-of-gaze data as input, our

extended model comprises M linear-chain CRFs as a sub-

module. Given S = {S(p) | p = 1, . . . , N}, G = {G(p) |
p = 1, . . . , N}, and J = {J (p,q) | p, q = 1, . . . , N, p 6=
q}, where J (p,q) denotes the joint attention between p and

q-th persons, Eq. (1) is then modified as follows:

Ψ(S,J | G) =
∑

p∈{1,...,N}

ΨGO(S
(p) | G(p))

+
∑

p∈{1,...,N}

ΨTS(S
(p))

+
∑

p,q∈{1,...,N},p 6=q

ΨJA(J
(p,q)

, S
(p)

, S
(q) | G(p)

, G
(q))

+
∑

p,q∈{1,...,N},p 6=q

ΨTJ(J
(p,q)).

(2)

In the experiments we apply this extended model to discover

joint attention of three persons.

2.2. Cues for Discovering Joint Attention

Our technical interests lie in how various cues about in-

puts (first-person videos and points of gaze data) and out-

puts (temporal intervals and spatial segments of joint at-

tention) can be incorporated into the proposed model. The

previous work [11] just focuses on the visual similarity of

regions being looked at across multiple videos, which be-

comes problematic under practical cases when videos have

cluttered scenes and points of gaze are noisy. In what fol-

lows we define the four terms ΨGO,ΨTS,ΨJA,ΨTJ to cope

with such cases.

Gaze proximity and objectness ΨGO describes how

likely segment s
(p)
t is to be looked at by p-th person given

a point of gaze g
(p)
t (gaze proximity) and how likely the

segment is to be an object (objectness). We evaluate the

gaze proximity by the spatial distance between s
(p)
t and g

(p)
t
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while the objectness is measured based on the shape of seg-

ments as follows:

ΨGO(S
(p) | G(p)) =

T
∑

t=1

(

λGO1
‖C(s

(p)
t )− g

(p)
t ‖2

|s
(p)
t |

1
2

+ λGO2

(

1−
|s

(p)
t |

|H(s
(p)
t )|

)

)

,

(3)

where C(s
(p)
t ) is the 2D centroid of segment s

(p)
t , H(s

(p)
t )

is the convex hull of s
(p)
t , and |x| is here the area of region

x. The second term in the right-hand side intuitively means

that a segment with large concavities is less likely to be an

object. λGO1 and λGO2 are weight parameters that we will

give concretely in Section 2.4.

Temporal consistency of segments While the gaze prox-

imity and objectness of segments are evaluated indepen-

dently for each time frame, segments being looked at should

be visually consistent over time as long as the people look

at the same object. We, therefore, consider the temporal

consistency of segments in ΨTS. This is measured by the

visual similarity of consecutive segments as follows:

ΨTS(S
(p)) = λTS

T−1
∑

t=1

(

1− fsim

(

s
(p)
t , s

(p)
t+1

))

, (4)

where λTS is a weight parameter. The similarity function

fsim gives the cosine similarity of appearance-based fea-

tures extracted from segments, which will be explained in

detail in Section 2.4. This cost term helps us to track ob-

jects over time even if noisy points of gaze are scattered

across various segments in a cluttered scene.

Joint attentionness Similar to [11], we introduce the

inter-video similarity of segments being looked at. Here we

make simple assumptions that 1) when people look at the

same object (jt = 1), segments across multiple videos, s
(1)
t

and s
(2)
t , should be visually consistent and 2) when people

pay attention to objects, their head is kept stable. These

two assumptions are implemented in ΨJA in the following

fashion:

ΨJA(J, S
(1), S(2) | G(1), G(2)) =

T
∑

t=1

(

λJA1Y (jt, s
(1)
t , s

(2)
t , g

(1)
t , g

(2)
t ) + λJA2Z(jt)

)

,
(5)

where λJA1, λJA2 are two weight parameters. The term

Y (jt, s
(1)
t , s

(2)
t , g

(1)
t , g

(2)
t ) measures the visual similarity of

the two segments s
(1)
t and s

(2)
t :

Y (jt, s
(1)
t , s

(2)
t , g

(1)
t , g

(2)
t ) =jt(1− fsim(s

(1)
t , s

(2)
t ))

+ (1− jt)α(g
(1)
t , g

(2)
t )

(6)

where fsim is given by the cosine similarity between two

segments across videos as in Eq. (4). The first term in

Eq. (6) encourages the two segments s
(1)
t , s

(2)
t to be visually

consistent when jt = 1. On the other hand, the second term

is needed in order to avoid a trivial solution where jt be-

comes always zero. Please note that α(g
(1)
t , g

(2)
t ) measures

the cosine similarity between regions around points of gaze

g
(1)
t and g

(2)
t , instead of s

(1)
t and s

(2)
t . This is because the

similarity of the segments s
(1)
t and s

(2)
t is irrelevant when

no joint attention exists, and we expect that the people are

more likely to be looking at different objects with different

visual appearances. More details on how α(g
(1)
t , g

(2)
t ) is

computed will be given in Section 2.4.

Z(jt) in the second term of Eq. (5) takes Z(jt) = jt
if the magnitude of global motion between consecutive

frames is over threshold δm for either of the two videos,

and Zt(jt) = 0 otherwise. This penalizes joint attention

that occurs under large head motion and, as a result, allows

us to discover joint attention only when the two people keep

their head stable.

Temporal consistency of joint attention Finally, we ob-

serve that joint attention typically continues for a certain

time. This motivates us to introduce another temporal con-

sistency term ΨTJ on joint attention variables J as follows:

ΨTJ(J) = λTJ

T−1
∑

t=1

|jt − jt+1|, (7)

where λTJ is a weight parameter. ΨTJ prevents frequent

onsets and offsets of joint attention.

2.3. Model inference

Here we describe the model inference for the two-person

case for simplicity of description. Minimizing Eq. (1) with

respect to S(1), S(2), J gives us both of the temporal local-

ization and the spatial segmentation of objects being looked

at jointly. Since exhaustive search on the space of all pos-

sible combinations of object segments S(1), S(2) and joint

attention states J is computationally intractable, we take an

alternative inference algorithm to optimize the model. We

divide the whole optimization procedure into three parts,

each of which can be optimized separately using Viterbi al-

gorithm [21]:

Initialization At the beginning, we use gaze proximity,

objectness, and temporal consistency of the object segments

of attention to initialize S(1) and S(2) independently:

S(1)∗, S(2)∗ =arg min
S(1),S(2)

∑

p∈{1,2}

ΨGO(S
(p) | G(p))

+
∑

p∈{1,2}

ΨTS(S
(p))

(8)
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Temporal localization Fixing object segments obtained

from the initialization part or the spatial segmentation part,

we temporally localize joint attention by utilizing joint at-

tentionness (visual similarity between object segments of

two videos), and temporal consistency of joint attention:

J∗ = arg min
J

ΨJA(J | S
(1), S(2), G(1), G(2)) + ΨTJ(J)

(9)

Spatial segmentation Fixing joint attention states ob-

tained from the temporal localization part, we optimize ob-

ject segments using information as in the initialization part,

and also the information from the other video if joint atten-

tion happens.

S(1)∗, S(2)∗ =arg min
S(1),S(2)

∑

p∈{1,2}

ΨGO(S
(p) | G(p))

+
∑

p∈{1,2}

ΨTS(S
(p)) + ΨJA(S

(1), S(2) | J)

(10)

As summarized in Algorithm 1, the initialization part is

executed only once at the beginning. After that, we alter-

natively run the temporal localization part and spatial seg-

mentation part until the change rate of J is below a certain

threshold ξ.

Algorithm 1: Alternative inference algorithm

Result: Optimized S(1), S(2) and J
Initialize segmentation S(1) and S(2) using Eq. (8) ;

while Change rate ≥ ξ do

Optimize J by fixing S(1), S(2) using Eq. (9);

Optimize S(1), S(2) by fixing J using Eq. (10);

Estimate Change rate of J ;

end

2.4. Implementation Details

We generate region proposals R
(p)
t by Selective

Search [24] per frame, using region masks instead of bound-

ing boxes. We used ”single strategy” as stated in [24] for

speed. For efficient inference, we perform pre-processing

to filter out most region proposals that are probably irrel-

evant to the objects of attention. We compute a score for

each region proposal based on Eq. (3), and keep only 16

ones with highest scores as the final region candidates. As

for the region features extracted for comparing visual sim-

ilarity, we first compute 144-dimensional Local Intensity

Order Pattern (LIOP) [25] descriptors in a 5 × 5 grid and

then pool them spatially by the Fisher Vector [15] with

a 64-component Gaussian Mixture Model (GMM) learned

from randomly sampled descriptors. We then concatenate

HSV color histogram discretized into 16 bins for each color

channel independently (i.e., 48-dimensional features). To

compute global motion of videos we use the Lucas-Kanade

method, and set the threshold to δm < 1.5. The weight pa-

rameters are set to {λGO1, λGO2, λTS, λJA1, λJA2, λTJ} ←
{1, 1.5, 2, 2, 10, 0.25} empirically. The change rate thresh-

old ξ for the optimization is set to 0.02. For α(g
(1)
t , g

(2)
t ),

we computed the similarity of circular regions around

points of gaze at multiple scales (15, 25, 50 pixel-radius)

similar to [11] and gave its maximum similarity.

3. Experiments

To evaluate the performance of the proposed approach

on both tasks of temporal localization and spatial segmen-

tation of jointly attended objects, we collected a new dataset

that recorded realistic social interaction scenes with multi-

ple wearable eye-tracking cameras.

3.1. Experimental Setting

Following [11], we mainly address the cases where two

persons in interactions establish joint attention under sev-

eral different formations. For each of the formations side-

by-side (SbS) and face-to-face (FtF) originally presented

in [11], we further divide it into two different scenarios

where people pay attention to objects with large head mo-

tion or small one. For one scenario, objects are placed on

two tables distant to each other, which induces large head

rotations (over 90 degrees) to shift attention between the

objects. For the other scenario, objects are placed close to

each other, which requires only a slight shift in attention

with little head motion. As a result, we evaluate the methods

for four different recording conditions in total: SbS-large,

SbS-small, FtF-large, FtF-small.

24 pairs of first-person videos and points-of-gaze data

were recorded in total. Each participant was equipped with

a Tobii Pro Glass 2 that was calibrated and manually syn-

chronized for each recording. Videos were recorded at 25-

fps with the resolution of 1920 × 1080. Ground-truth la-

bels for temporal localization were annotated by manual in-

spections. Then we used GrabCut [16] to generate binary

masks of objects being looked at jointly for a total of 1250

sampled frames, as ground-truth labels for the segmenta-

tion task. Model parameters were chosen via grid search

on a separate set of data (four scenarios from one pair of

subjects), and the method was evaluated with the rest of the

data.

3.2. Jointly­Attended Object Segmentation Task

We first address the task of segmenting jointly attended

objects. The intersection-over-union (IoU) ratio is used as

an evaluation metric. We adopt the following three base-

lines:
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Method FtF-large FtF-small SbS-large SbS-small Avg.

ObMiC [9] 0.287 0.212 0.065 0.336 0.225

Baseline1 0.552 0.599 0.681 0.691 0.631

Baseline2 0.611 0.629 0.723 0.726 0.672

Ours 0.633 0.660 0.730 0.735 0.690

Table 1. Quantitative Comparisons on Segmentation Task: Intersection-over-union (IoU) for four different recording conditions of two

persons.

ObMiC [9]. This method is one of the most relevant meth-

ods to our work as it used region proposals and consid-

ered temporal consistency for co-segmenting objects

across multiple videos. We introduce this baseline

to see how points-of-gaze information guides the seg-

mentation of objects being looked at jointly. It should

be noted that [9] used a different method [7] to gen-

erate object proposals, and since they are highly cou-

pled, we could not substitute [7] with Selective Search

used in our method. However, as stated in [24] (sec-

tion 5.2.2), the segmentation performance of Selective

Search is even slightly worse than [7]. Therefore our

method do not obtain extra advantage against [9] by

using different object proposals.

Baseline1. In order to see how points-of-gaze information

alone works well for segmenting objects of joint at-

tention, this simplified version of the proposed model

employs the only ΨGO, the first term of Eq. (1).

Baseline2. In this baseline, we aim to see how the cue of

temporal consistency helps stable segmentation under

cluttered scenes and noisy points of gaze. Specifically,

we use ΨGO and ΨTS, which means that we optimize

multiple linear-chain CRF sub-modules independently

without considering the cues about joint attention.

Quantitative results are shown in Table 1. The proposed

model clearly outperforms ObMiC [9] that did not use gaze

information. The proposed model also performs consis-

tently better than Baseline1 and Baseline2, indicating the

necessity of temporal consistency cue ΨTS and joint at-

tention cues ΨJA,ΨTJ. By comparing the four recording

conditions, it can be seen that FtF formations are generally

more challenging than SbS ones. This is typically due to a

large difference of viewpoints between the two persons in

the FtF formation, causing object appearance inconsistent

across videos. In addition, the segmentation performance

often degrades under large head motion due to unstable eye

tracking and motion blur.

Figure 4 shows some qualitative results. As shown in

the examples (a) and (b), the proposed model is able to find

the correct object segment even when the noisy point-of-

gaze is outside the object of attention by taking into account

temporal consistency. Baseline methods under-segment or
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Figure 3. Per-frame objective function score at each iteration. Note

that not all video pairs enter Iteration 3, and the scores of those

which terminate at Iteration 2 are treated as static in Iteration 3.

over-segment objects in the examples (c), (d), and (e), while

our method can perform a stable segmentation thanks to the

cues of joint attention.

More importantly, we observe in the experiments that

the per-frame score of objective function monotonically de-

creases at each step of iteration (see Figure 3), which vali-

dates our claim that accurate segmentation guides accurate

temporal localization, and vice versa.

3.3. Temporal Localization Task

Next, we address the task of temporal localization of

joint attention. Here we compare our approach against [11]

which is the only relevant work for the same task to the

best of our knowledge. As shown in Table 2, the baseline

method [11] is prone to obtain higher recall/lower precision

scores, indicating that irrelevant temporal intervals tend to

be judged as joint attention periods. On the other hand,

our approach can obtain more balanced precision and re-

call scores and a much higher F1 score. Most importantly,

we observe in the experiments that the cost function of the

proposed method in Eq. (1) monotonically decreases at each

step during the alternative minimization. This result shows

that better segmentation guides better temporal localization,

and vice versa.

We also collected three-persons interaction data to eval-

uate the extended version of our model presented in Sec-

tion 2.1. Specifically, three participants were asked to sit in

triangle formation around a table, as shown in Figure 1, to

play a card game. Figure 5 depicts qualitative results. We
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Figure 4. Segmenting Objects of Joint Attention: Examples. Red boundaries indicate jointly-attended object segments and green circles

describe points of gaze. The first two rows describe the ground truth segments for the two input videos. The remaining rows show

segmentation results in the second video.

Method
FtF-large (%) FtF-small (%) SbS-large (%) SbS-small (%) Avg. (%)

P R P R P R P R F1 score

Kera et al. [11] 74.5 89.7 69.7 93.8 72.9 96.5 67.1 83.4 79.0

Ours 91.9 92.8 84.7 86.5 94.3 92.6 79.7 98.7 89.3

Table 2. Quantitative Comparisons on Temporal Localization Task: Precision (P) and recall (R) scores for each condition as well as

the F1 score averaged over all the conditions.

confirm that joint attention is discovered correctly when (a)

persons P1 and P3 jointly pay attention to the same card in

P3’s hand and (d) P1, P2, P3 all look at the same card on

the table. On the other hand, false negative and false posi-

tive results are found in (b) and (c), respectively. These fail-

ure cases imply some potential limitations of our approach,

which we will discuss in the next section.

3.4. Limitations

While the proposed approach outperforms existing co-

segmentation [9] and joint-attention discovery [11] meth-

ods, there are some limitations on our appearance-based ap-

proach. First, currently we can’t segment objects with quite

dissimilar appearances from different viewpoints. This lim-

itation causes the failure in Figure 5 (b) and degrades the

performance in the FtF conditions in Table 1. In addition,

different objects with similar appearance, like the cards in

Figure 5 (c), cannot be distinguished by our approach. Fi-

nally, our assumption about stable head pose during joint

attention will not always hold for more challenging scenar-

ios where people can move (e.g., walking) during interac-

tions. One possible solution to address these limitations is

by making use of 3D geometric relationship of the people,

though it requires costly computation for stable 3D recon-

structions. For instance, object regions near the intersection

of two viewing directions are more likely to correspond to

an object of joint attention. We leave this for our future

work.
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Figure 5. Joint Attention Discovery for Three Persons Case. The top half shows the ground truth and predicted results of temporal

localization. The bottom half depicts some segmentation results in pink boundaries and points of gaze in green circles. Images highlighted

in pink borders are judged as joint attention periods by the proposed model.

4. Conclusions

We proposed a new method for temporally localizing and

spatially segmenting objects of joint attention in multiple

first person videos recorded with gaze data. The two cou-

pled tasks are solved together in a unified framework, which

alternates temporal localization of joint attention and spatial

segmentation of jointly attended objects. A new dataset is

collected for evaluating the performance of different meth-

ods. Experimental results demonstrate that our approach is

able to achieve state-of-the-art performance in both tasks.

In future work, we plan to use the predicted points of

gaze instead of the measured gaze data in testing. This

would make our method more practical in real world sce-

narios, as high-performance eye-trackers are expensive and

not always available with respect to single wearable cam-

eras. Another interesting extension of our future work is

to take advantage of deep learning techniques, which have

been proved to achieve substantial higher performance com-

pared with traditional methods in numerous computer vi-

sion tasks.
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